Tissue-specific conditional CCM2 knockout mice establish the essential role of endothelial CCM2 in angiogenesis: implications for human cerebral cavernous malformations.

نویسندگان

  • Gwénola Boulday
  • Anne Blécon
  • Nathalie Petit
  • Fabrice Chareyre
  • Luis A Garcia
  • Michiko Niwa-Kawakita
  • Marco Giovannini
  • Elisabeth Tournier-Lasserve
چکیده

Cerebral cavernous malformations (CCM) are vascular malformations of the brain that lead to cerebral hemorrhages. In 20% of CCM patients, this results from an autosomal dominant condition caused by loss-of-function mutations in one of the three CCM genes. High expression levels of the CCM genes in the neuroepithelium indicate that CCM lesions might be caused by a loss of function of these genes in neural cells rather than in vascular cells. However, their in vivo function, particularly during cerebral angiogenesis, is totally unknown. We developed mice with constitutive and tissue-specific CCM2 deletions to investigate CCM2 function in vivo. Constitutive deletion of CCM2 leads to early embryonic death. Deletion of CCM2 from neuroglial precursor cells does not lead to cerebrovascular defects, whereas CCM2 is required in endothelial cells for proper vascular development. Deletion of CCM2 from endothelial cells severely affects angiogenesis, leading to morphogenic defects in the major arterial and venous blood vessels and in the heart, and results in embryonic lethality at mid-gestation. These findings establish the essential role of endothelial CCM2 for proper vascular development and strongly suggest that the endothelial cell is the primary target in the cascade of events leading from CCM2 mutations to CCM cerebrovascular lesions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure and vascular function of MEKK3–cerebral cavernous malformations 2 complex

Cerebral cavernous malformations 2 (CCM2) loss is associated with the familial form of CCM disease. The protein kinase MEKK3 (MAP3K3) is essential for embryonic angiogenesis in mice and interacts physically with CCM2, but how this interaction is mediated and its relevance to cerebral vasculature are unknown. Here we report that Mekk3 plays an intrinsic role in embryonic vascular development. In...

متن کامل

Developmental timing of CCM2 loss influences cerebral cavernous malformations in mice

Cerebral cavernous malformations (CCM) are vascular malformations of the central nervous system (CNS) that lead to cerebral hemorrhages. Familial CCM occurs as an autosomal dominant condition caused by loss-of-function mutations in one of the three CCM genes. Constitutive or tissue-specific ablation of any of the Ccm genes in mice previously established the crucial role of Ccm gene expression i...

متن کامل

Cerebral cavernous malformations arise independent of the heart of glass receptor.

BACKGROUND AND PURPOSE The Heart of Glass (HEG) receptor binds KRIT1 and functions with KRIT1, CCM2, and PDCD10 in a common signaling pathway required for heart and vascular development. Mutations in KRIT1, CCM2, and PDCD10 also underlie human cerebral cavernous malformation (CCM) and postnatal loss of these genes in the mouse endothelium results in rapid CCM formation. Here, we test the role o...

متن کامل

Cerebral cavernous malformations proteins inhibit Rho kinase to stabilize vascular integrity

Endothelial cell-cell junctions regulate vascular permeability, vasculogenesis, and angiogenesis. Familial cerebral cavernous malformations (CCMs) in humans result from mutations of CCM2 (malcavernin, OSM, MGC4607), PDCD10 (CCM3), or KRIT1 (CCM1), a Rap1 effector which stabilizes endothelial cell-cell junctions. Homozygous loss of KRIT1 or CCM2 produces lethal vascular phenotypes in mice and ze...

متن کامل

Regulation of cardiovascular development and integrity by the heart of glass–cerebral cavernous malformation protein pathway

Cerebral cavernous malformations (CCMs) are human vascular malformations caused by mutations in three genes of unknown function: KRIT1, CCM2 and PDCD10. Here we show that the heart of glass (HEG1) receptor, which in zebrafish has been linked to ccm gene function, is selectively expressed in endothelial cells. Heg1–/– mice showed defective integrity of the heart, blood vessels and lymphatic vess...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Disease models & mechanisms

دوره 2 3-4  شماره 

صفحات  -

تاریخ انتشار 2009